a-user-running-fishmap.Rmd
library(FishMap)
library(FishMap)
main.R
This vignette runs a toy example of the FishMap spatio-temporal model. The execution comprises three steps : data preparation, model fitting and graph generation.
FishMap requires three types of input data :
They should be provided as individual data frames to the
fm_load_data()
function. You can find below the preview of
example input data frames used in this vignette.
survey_data_file <- system.file("original_data",
"Solea_solea",
"survey_data.Rds",
package = "FishMap"
)
survey_data <- readr::read_rds(file = survey_data_file)
survey_data %>% head() %>% knitr::kable()
layer | Survey | Year | Month | StNo | HaulNo | HaulDur | Quarter | Day | TimeShot | Stratum | StatRec | Depth | Distance | long | lati | Year_Quarter | CatchWgt_spp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19830 | BTS-VIII | 2017 | 11 | BIGO | 1 | 0.5000000 | 04 | 3 | 1347 | N | 24E5 | 69 | 4720 | -4.525 | 47.875 | 2017_04 | 5.4737333 |
19830 | BTS-VIII | 2018 | 11 | BIGO | 8 | 0.5000000 | 04 | 14 | 820 | N | 24E5 | NA | 4664 | -4.525 | 47.875 | 2018_04 | 1.4612254 |
20081 | BTS-VIII | 2017 | 11 | BEME | 3 | 0.2333333 | 04 | 4 | 849 | N | 24E5 | 15 | 2393 | -3.975 | 47.825 | 2017_04 | 0.2672393 |
20081 | BTS-VIII | 2018 | 11 | BEME | 1 | 0.2500000 | 04 | 10 | 1124 | N | 24E5 | 16 | 2489 | -3.975 | 47.825 | 2018_04 | 0.0338412 |
20313 | BTS-VIII | 2017 | 11 | PEMA | 4 | 0.5000000 | 04 | 4 | 1113 | N | 24E5 | 63 | 4687 | -4.375 | 47.775 | 2017_04 | 5.2887857 |
20313 | BTS-VIII | 2018 | 11 | PEMA | 9 | 0.5000000 | 04 | 14 | 1008 | N | 24E5 | 250 | 4540 | -4.375 | 47.775 | 2018_04 | 2.0623380 |
vmslogbook_data_file <- system.file("original_data",
"Solea_solea",
"vmslogbook_data.Rds",
package = "FishMap"
)
vmslogbook_data <- readr::read_rds(file = vmslogbook_data_file)
vmslogbook_data %>% head() %>% knitr::kable()
layer | VE_REF | SI_DATE | Ifr_Fleet | VE_LEN | VE_KW | LE_GEAR | LE_MET_level6 | long | lati | MET | HF | year | Month | Year | Year_Month | Quarter | Year_Quarter | LE_KG | LE_KG_mature | CPUE | CPUE_mature | CPUE_spp | f |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
569 | 18157 | 10/07/2017 | 2 | NA | 478.0 | OTB | OTB_DEF_>=70_0 | -10.575 | 51.875 | OTB_DEF | 1 | 2017 | 07 | 2017 | 2017_07 | 03 | 2017_03 | 0 | 0 | 0 | 0 | 0 | 1 |
1086 | 18157 | 10/07/2017 | 2 | NA | 478.0 | OTB | OTB_DEF_>=70_0 | -10.725 | 51.775 | OTB_DEF | 1 | 2017 | 07 | 2017 | 2017_07 | 03 | 2017_03 | 0 | 0 | 0 | 0 | 0 | 1 |
1602 | 18157 | 10/07/2017 | 2 | NA | 478.0 | OTB | OTB_DEF_>=70_0 | -10.925 | 51.675 | OTB_DEF | 1 | 2017 | 07 | 2017 | 2017_07 | 03 | 2017_03 | 0 | 0 | 0 | 0 | 0 | 1 |
2119 | 18157 | 10/07/2017 | 2 | NA | 478.0 | OTB | OTB_DEF_>=70_0 | -11.075 | 51.575 | OTB_DEF | 1 | 2017 | 07 | 2017 | 2017_07 | 03 | 2017_03 | 0 | 0 | 0 | 0 | 0 | 1 |
2895 | 18157 | 10/07/2017 | 2 | NA | 478.0 | OTB | OTB_DEF_>=70_0 | -11.275 | 51.425 | OTB_DEF | 1 | 2017 | 07 | 2017 | 2017_07 | 03 | 2017_03 | 0 | 0 | 0 | 0 | 0 | 1 |
3412 | 18157 | 10/07/2017 | 2 | NA | 478.0 | OTB | OTB_DEF_>=70_0 | -11.425 | 51.325 | OTB_DEF | 1 | 2017 | 07 | 2017 | 2017_07 | 03 | 2017_03 | 0 | 0 | 0 | 0 | 0 | 1 |
study_domain_file <- system.file("original_data",
"Solea_solea",
"study_domain.Rds",
package = "FishMap"
)
study_domain <- readr::read_rds(file = study_domain_file)
study_domain %>% head() %>% knitr::kable()
ID | ZONE | STRATE_BAT | SURFACE | SURFACE_MI | STRATE | prof | geometry |
---|---|---|---|---|---|---|---|
0 | Gn | 1 | 8201691989.5538 | 2391.2308 | Gn1 | NA | MULTIPOLYGON (((-4.736794 4… |
0 | Gn | 2 | 11771068809.3136 | 3431.8945 | Gn2 | NA | MULTIPOLYGON (((-5.098735 4… |
0 | Gn | 3 | 17327206591.5471 | 5051.8051 | Gn3 | NA | MULTIPOLYGON (((-5.098735 4… |
0 | Gn | 4 | 18854029923.0492 | 5496.9556 | Gn4 | NA | MULTIPOLYGON (((-2.610457 4… |
0 | Gn | 5 | 1612118624.86359 | 470.0186 | Gn5 | NA | MULTIPOLYGON (((-5.725294 4… |
0 | Gn | 6 | 1090197796.63664 | 317.8508 | Gn6 | NA | MULTIPOLYGON (((-5.740776 4… |
fm_load_data()
: prepare and load model inputs
This function prepares all the necessary output for the model fitting. It will filter and shape the observation data (VMS and scientific). It will generate the spatial mesh for the study domain. All outputs are reported as part of a named list.
# run part1
fm_data_inputs <- fm_load_data(species = "Solea_solea",
fleet = c("OTB_DEF_>=70_0","OTB_CEP_>=70_0","OTT_DEF_>=70_0"),
fitted_data = "biomass",
survey_data = survey_data,
vmslogbook_data = vmslogbook_data,
study_domain = study_domain,
year_start = 2018,
year_end = 2018,
month_start = 11,
month_end = 11,
time_step = "Month",
k = 0.25,
grid_xmin = -6,
grid_xmax = 0,
grid_ymin = 42,
grid_ymax = 48)
#> Running step 1 -loading data-
#> as(<dgCMatrix>, "dgTMatrix") is deprecated since Matrix 1.5-0; do as(., "TsparseMatrix") instead
#> Joining with `by = join_by(Year, Month)`
#> Joining with `by = join_by(Month, Year, Year_Month)`
#> Joining with `by = join_by(layer, cell)`
#> Joining with `by = join_by(layer, cell)`
#> Joining with `by = join_by(layer, cell)`
#> Step 1 -loading data-: 18.577 sec elapsed
fm_fit_model()
: compile model and fit to data
This function will fit the model to the observation data. It will
compile the model cpp file. It will fit the model to the input data
generated from fm_load_data()
and provide the results as a
named list.
# run part 2
fm_model_results <- fm_fit_model(fm_data_inputs = fm_data_inputs,
SE = 1,
data_source = 1,
data_obs = 2,
samp_process = 0,
b_constraint = 2,
cov_samp_process = 0,
biomass_temporal = 1,
sampling_temporal = 0,
lf_link = 0,
ref_data = "com",
EM = "est_b",
month_ref = 1)
#> Running step 2 -compile model-
#> Step 2 -compile model-: 0.043 sec elapsed
#> Running step 3 -fit model-
#> 0: 36231.535: 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 0.00000 0.00000 1.00000
#> 1: 34620.699: -0.000611263 0.0111047 -0.0156403 0.0102825 0.124038 0.170300 0.107928 0.219166 0.254485 0.984779 1.02404 0.00480612 0.00127533 1.00142
#> 2: 34468.939: -0.00311577 0.0603602 -0.0857435 -0.0222451 0.208401 0.331487 0.292156 0.0501506 0.0135788 0.943944 1.10149 0.0240668 0.00653019 1.00723
#> 3: 33982.291: -0.00699680 0.128341 -0.184046 -0.0766144 0.374464 0.603974 0.131266 0.113838 0.101948 0.842542 1.14889 0.0497129 0.0137662 1.01562
#> 4: 33810.021: -0.0154823 0.261197 -0.383417 0.0764999 0.493458 0.618758 0.133829 0.0569172 -0.0430482 0.632082 1.08769 0.0951398 0.0275287 1.03258
#> 5: 33729.552: -0.0164510 0.276589 -0.407765 0.0514200 0.505881 0.652014 0.156276 0.0145354 0.0575309 0.659175 1.08274 0.100509 0.0293550 1.03485
#> 6: 33686.940: -0.0191766 0.318496 -0.474206 0.00893454 0.549691 0.617556 0.168675 0.0248413 -0.00151819 0.682039 1.06548 0.114979 0.0343887 1.04119
#> 7: 33638.958: -0.0227585 0.371712 -0.559775 -0.00605338 0.532240 0.625772 0.176094 -0.00423238 0.0426364 0.641538 1.05089 0.133499 0.0412104 1.04991
#> 8: 33620.032: -0.0261337 0.418411 -0.640393 -0.0342850 0.530637 0.608663 0.190487 0.0649055 0.0254458 0.629140 1.03516 0.151114 0.0487885 1.05974
#> 9: 33583.491: -0.0296476 0.466499 -0.724333 -0.0438316 0.526986 0.616835 0.176766 -0.00160644 0.00236307 0.616259 1.01214 0.170230 0.0571068 1.07045
#> 10: 33567.300: -0.0303451 0.475466 -0.740533 -0.0474712 0.543779 0.633865 0.185195 0.0289533 0.0438028 0.617156 1.00937 0.174022 0.0588620 1.07273
#> 11: 33551.884: -0.0322315 0.496623 -0.783106 -0.0470869 0.548051 0.625279 0.190934 0.0119093 0.0189748 0.620048 0.995482 0.184162 0.0643544 1.07994
#> 12: 33541.057: -0.0342130 0.517556 -0.826890 -0.0592820 0.547664 0.638322 0.183568 0.0225153 0.0423825 0.612723 0.990476 0.194633 0.0704097 1.08794
#> 13: 33528.834: -0.0363021 0.536812 -0.871073 -0.0604765 0.541815 0.629576 0.193767 0.0194579 0.0151104 0.602361 0.985144 0.205331 0.0773888 1.09723
#> 14: 33519.168: -0.0384477 0.552458 -0.914393 -0.0659811 0.550695 0.635143 0.193089 0.00997024 0.0422614 0.615365 0.974737 0.216080 0.0857430 1.10843
#> 15: 33509.846: -0.0407163 0.568351 -0.959088 -0.0687796 0.558711 0.632886 0.186068 0.0271709 0.0198829 0.603188 0.971821 0.226922 0.0947787 1.12057
#> 16: 33502.083: -0.0429815 0.578676 -1.00012 -0.0665735 0.535914 0.634885 0.205201 0.00950489 0.0328800 0.592881 0.972014 0.236688 0.105213 1.13471
#> 17: 33493.520: -0.0452376 0.585728 -1.03957 -0.0882358 0.549713 0.639364 0.185023 0.0166912 0.0251598 0.612600 0.971261 0.245905 0.117084 1.15076
#> 18: 33487.994: -0.0471415 0.600190 -1.07719 -0.0688601 0.553780 0.637511 0.214288 0.0170128 0.0295670 0.590455 0.963771 0.254301 0.124793 1.16104
#> 19: 33480.739: -0.0494881 0.606979 -1.11736 -0.0785503 0.556318 0.629804 0.179710 0.00974230 0.0278094 0.588749 0.957460 0.262852 0.138020 1.17879
#> 20: 33474.263: -0.0519570 0.612911 -1.15736 -0.0813324 0.551730 0.647238 0.204749 0.0224565 0.0256494 0.605509 0.958260 0.270745 0.152337 1.19792
#> 21: 33472.105: -0.0545821 0.613891 -1.19624 -0.0907478 0.541919 0.636643 0.196735 -0.00361663 0.0247866 0.592207 0.965429 0.277726 0.169802 1.22112
#> 22: 33465.711: -0.0569968 0.615873 -1.23230 -0.0864680 0.563252 0.624284 0.187534 0.0205426 0.0330845 0.575822 0.963280 0.284163 0.185693 1.24213
#> 23: 33461.588: -0.0591968 0.612596 -1.26176 -0.0680949 0.567658 0.630247 0.196047 0.00330718 0.0254294 0.601226 0.941321 0.287887 0.203347 1.26504
#> 24: 33457.265: -0.0613984 0.613760 -1.29411 -0.0826166 0.545476 0.657021 0.195647 0.0201496 0.0299338 0.592629 0.950954 0.292273 0.219800 1.28621
#> 25: 33455.112: -0.0638411 0.612770 -1.32821 -0.0976103 0.549692 0.633063 0.199143 0.00917653 0.0106782 0.585262 0.962883 0.296877 0.239010 1.31082
#> 26: 33450.162: -0.0662130 0.611947 -1.36089 -0.0966840 0.572320 0.623438 0.196624 0.00623256 0.0390277 0.572211 0.965236 0.300944 0.258558 1.33549
#> 27: 33446.244: -0.0683495 0.611843 -1.39041 -0.0806185 0.556850 0.633802 0.192643 0.0152277 0.0218311 0.591302 0.941839 0.304123 0.277352 1.35858
#> 28: 33446.066: -0.0709831 0.608455 -1.42318 -0.0896153 0.550049 0.654254 0.206963 0.00200116 0.0348572 0.590870 0.949390 0.306816 0.301269 1.38787
#> 29: 33441.307: -0.0719101 0.607491 -1.43465 -0.0935515 0.558646 0.646101 0.201915 0.0157816 0.0199124 0.586969 0.952276 0.307867 0.309482 1.39790
#> 30: 33439.669: -0.0733362 0.608765 -1.45429 -0.0924653 0.558604 0.642584 0.196732 0.00762463 0.0277530 0.582821 0.949920 0.310385 0.321082 1.41200
#> 31: 33438.084: -0.0748115 0.606517 -1.47068 -0.0953221 0.562567 0.635865 0.202746 0.0140195 0.0241471 0.581540 0.954071 0.311477 0.334958 1.42853
#> 32: 33436.743: -0.0764086 0.603015 -1.48655 -0.0983562 0.562545 0.641348 0.200382 0.00738585 0.0277208 0.582450 0.955860 0.312034 0.350082 1.44639
#> 33: 33435.363: -0.0779813 0.599834 -1.50194 -0.0940494 0.561115 0.642252 0.197865 0.0145157 0.0217946 0.581635 0.950363 0.312795 0.365026 1.46378
#> 34: 33434.164: -0.0795491 0.597046 -1.51670 -0.0946204 0.557069 0.638739 0.203867 0.00915478 0.0283104 0.582174 0.950678 0.313440 0.380615 1.48145
#> 35: 33432.896: -0.0811394 0.593365 -1.53029 -0.0972105 0.565670 0.640199 0.200618 0.0127109 0.0234597 0.583870 0.953931 0.313553 0.396601 1.49937
#> 36: 33431.781: -0.0827963 0.590587 -1.54558 -0.0942867 0.561350 0.643533 0.198687 0.00727471 0.0267462 0.580729 0.951335 0.314371 0.412644 1.51724
#> 37: 33430.726: -0.0844115 0.587591 -1.55869 -0.0961397 0.557642 0.636866 0.202154 0.0159436 0.0242706 0.581130 0.951965 0.314710 0.428988 1.53496
#> 38: 33429.657: -0.0861081 0.583315 -1.57014 -0.0978335 0.563002 0.640960 0.202878 0.00775508 0.0263837 0.584701 0.952558 0.314215 0.446221 1.55334
#> 39: 33428.707: -0.0878513 0.579241 -1.58248 -0.0938992 0.565811 0.642957 0.198006 0.0142107 0.0236579 0.581413 0.949825 0.314244 0.463467 1.57158
#> 40: 33427.723: -0.0896252 0.576560 -1.59619 -0.0944415 0.558800 0.639666 0.200458 0.00853952 0.0246172 0.580702 0.952347 0.314797 0.480575 1.58955
#> 41: 33427.030: -0.0914521 0.572943 -1.60688 -0.0979362 0.559452 0.639612 0.203080 0.0168202 0.0292618 0.585722 0.954732 0.314366 0.498464 1.60768
#> 42: 33426.145: -0.0932647 0.567957 -1.61678 -0.0973674 0.565575 0.640581 0.202557 0.0104064 0.0201326 0.583131 0.951228 0.313801 0.515732 1.62539
#> 43: 33425.425: -0.0951859 0.564311 -1.62750 -0.0940310 0.561981 0.643447 0.197185 0.00906740 0.0297558 0.581938 0.947205 0.313717 0.533314 1.64288
#> 44: 33424.398: -0.0971560 0.560307 -1.63929 -0.0927862 0.563275 0.640798 0.200265 0.0141452 0.0238508 0.581365 0.952872 0.313738 0.551233 1.66099
#> 45: 33423.739: -0.0993266 0.557064 -1.65041 -0.0962762 0.558740 0.642044 0.201113 0.00775327 0.0261325 0.587170 0.952794 0.313505 0.569674 1.67906
#> 46: 33422.780: -0.101521 0.551927 -1.66034 -0.0974160 0.564511 0.642811 0.201105 0.0130812 0.0264047 0.582471 0.947582 0.312895 0.588109 1.69743
#> 47: 33422.145: -0.103777 0.551047 -1.67510 -0.0913425 0.560491 0.639067 0.198672 0.00840824 0.0232250 0.583694 0.953805 0.314117 0.604731 1.71398
#> 48: 33421.348: -0.106260 0.545913 -1.68653 -0.0906986 0.564049 0.643855 0.200561 0.0109637 0.0272766 0.583242 0.957734 0.313845 0.622971 1.73259
#> 49: 33420.840: -0.108545 0.543701 -1.69470 -0.100743 0.560247 0.641959 0.199641 0.0137350 0.0213189 0.586009 0.940699 0.313402 0.636736 1.74649
#> 50: 33420.094: -0.111344 0.538954 -1.70547 -0.101988 0.562307 0.643547 0.204202 0.00809373 0.0270126 0.579514 0.936470 0.312949 0.653871 1.76456
#> 51: 33419.447: -0.113361 0.540319 -1.71880 -0.0918492 0.562510 0.640861 0.199294 0.0132629 0.0242906 0.585166 0.954212 0.315056 0.663935 1.77534
#> 52: 33418.944: -0.116658 0.536606 -1.73264 -0.0892351 0.562223 0.643959 0.198691 0.00740873 0.0251719 0.587547 0.959950 0.315741 0.680485 1.79376
#> 53: 33418.246: -0.119592 0.530727 -1.73904 -0.0986615 0.563663 0.643182 0.201469 0.0119969 0.0243635 0.581334 0.944902 0.314345 0.694415 1.80971
#> 54: 33417.940: -0.123237 0.531664 -1.75586 -0.0953071 0.560798 0.641609 0.204811 0.00601897 0.0275211 0.583531 0.939138 0.316423 0.708921 1.82680
#> 55: 33416.925: -0.127372 0.528130 -1.76925 -0.0931468 0.560193 0.641963 0.199481 0.0131407 0.0256051 0.585661 0.946656 0.317466 0.723584 1.84540
#> 56: 33416.886: -0.130928 0.524581 -1.78327 -0.0992058 0.564137 0.646786 0.206346 0.00609689 0.0184910 0.581290 0.945937 0.317624 0.736308 1.86256
#> 57: 33416.140: -0.132769 0.523927 -1.78985 -0.0994944 0.564880 0.647348 0.202570 0.0115819 0.0256141 0.580964 0.946711 0.317958 0.741700 1.87011
#> 58: 33415.804: -0.134945 0.523665 -1.79749 -0.0958054 0.564374 0.642907 0.201325 0.00940610 0.0231512 0.582949 0.948056 0.318748 0.747957 1.87880
#> 59: 33415.517: -0.137368 0.522196 -1.80467 -0.0944678 0.562573 0.644304 0.201124 0.0116503 0.0262963 0.584372 0.949349 0.319441 0.754867 1.88863
#> 60: 33415.271: -0.139899 0.519224 -1.81061 -0.0962206 0.561292 0.644512 0.201037 0.0108777 0.0227704 0.584072 0.948046 0.319665 0.761989 1.89909
#> 61: 33415.004: -0.142759 0.516815 -1.81693 -0.0951407 0.564129 0.644672 0.200769 0.0113526 0.0256256 0.584185 0.947601 0.319990 0.768758 1.90968
#> 62: 33414.761: -0.145583 0.515049 -1.82416 -0.0952283 0.562629 0.643008 0.201465 0.0100381 0.0234220 0.583748 0.948746 0.320406 0.775272 1.92020
#> 63: 33414.542: -0.148467 0.511965 -1.82989 -0.0966932 0.561659 0.645144 0.201337 0.0119625 0.0256178 0.583234 0.948271 0.320627 0.781899 1.93110
#> 64: 33414.321: -0.151656 0.509414 -1.83511 -0.0928180 0.563974 0.645369 0.200396 0.0108259 0.0224878 0.586048 0.947658 0.321388 0.787751 1.94162
#> 65: 33414.087: -0.154774 0.507785 -1.84227 -0.0940196 0.563209 0.644708 0.200722 0.0103866 0.0258523 0.584381 0.948485 0.321924 0.793627 1.95230
#> 66: 33413.911: -0.158008 0.504663 -1.84747 -0.0971528 0.562977 0.642646 0.201660 0.0112429 0.0229041 0.582514 0.948161 0.321573 0.799372 1.96333
#> 67: 33413.691: -0.161688 0.501568 -1.85234 -0.0948430 0.562754 0.645631 0.201120 0.0110865 0.0247342 0.584865 0.948221 0.321911 0.804854 1.97472
#> 68: 33413.503: -0.165417 0.499740 -1.85893 -0.0928463 0.563593 0.644413 0.200530 0.0114878 0.0219080 0.585195 0.948181 0.323724 0.810042 1.98588
#> 69: 33413.285: -0.169182 0.497478 -1.86507 -0.0953892 0.563411 0.643669 0.200755 0.00992332 0.0248764 0.583550 0.948318 0.323852 0.814984 1.99717
#> 70: 33413.157: -0.173318 0.495110 -1.87062 -0.0946343 0.564129 0.643768 0.202113 0.0136597 0.0233621 0.584121 0.948612 0.322239 0.819335 2.00881
#> 71: 33412.928: -0.177324 0.492488 -1.87632 -0.0952845 0.561721 0.645344 0.201629 0.0108746 0.0227674 0.584855 0.948247 0.322830 0.824147 2.02036
#> 72: 33412.795: -0.181476 0.490022 -1.88127 -0.0941248 0.564960 0.645171 0.200295 0.0128726 0.0257810 0.583956 0.947573 0.327220 0.828311 2.03121
#> 73: 33412.558: -0.185833 0.488140 -1.88761 -0.0943894 0.564605 0.643149 0.200898 0.0110842 0.0233761 0.584142 0.948491 0.327907 0.832476 2.04284
#> 74: 33412.400: -0.189970 0.486604 -1.89395 -0.0932749 0.563034 0.645398 0.201533 0.0119533 0.0254991 0.584680 0.948786 0.323844 0.836022 2.05408
#> 75: 33412.214: -0.194303 0.483910 -1.89955 -0.0948246 0.563164 0.645467 0.201007 0.0121374 0.0229168 0.584269 0.947347 0.325731 0.840468 2.06582
#> 76: 33412.057: -0.198639 0.482025 -1.90485 -0.0944735 0.564092 0.644324 0.201183 0.0107880 0.0255582 0.584678 0.948446 0.332215 0.844191 2.07637
#> 77: 33411.898: -0.202970 0.480550 -1.91139 -0.0935179 0.564123 0.643485 0.201164 0.0120419 0.0238071 0.584552 0.949245 0.327805 0.847357 2.08777
#> 78: 33411.758: -0.207432 0.477699 -1.91660 -0.0937191 0.563467 0.645903 0.200924 0.0110210 0.0248340 0.583905 0.947457 0.324993 0.850959 2.09969
#> 79: 33411.625: -0.211572 0.474948 -1.92007 -0.0940163 0.563539 0.645481 0.201289 0.0120240 0.0232885 0.585045 0.947709 0.333902 0.854456 2.10952
#> 80: 33411.489: -0.216398 0.473901 -1.92676 -0.0936233 0.563573 0.644260 0.200940 0.0107409 0.0254659 0.585351 0.949349 0.331144 0.856934 2.12119
#> 81: 33411.368: -0.220938 0.471915 -1.93220 -0.0937422 0.564465 0.643806 0.200820 0.0119596 0.0238298 0.584004 0.948561 0.325457 0.859264 2.13261
#> 82: 33411.250: -0.225535 0.468334 -1.93499 -0.0933649 0.563413 0.645777 0.201183 0.0110298 0.0245573 0.583929 0.947693 0.332978 0.862398 2.14332
#> 83: 33411.126: -0.231128 0.466647 -1.94052 -0.0931201 0.564005 0.645109 0.200969 0.0121223 0.0232511 0.586134 0.948886 0.333388 0.864298 2.15563
#> 84: 33411.009: -0.236452 0.464823 -1.94576 -0.0935760 0.564016 0.644875 0.200702 0.0109211 0.0249502 0.585166 0.948753 0.329335 0.865918 2.16772
#> 85: 33410.910: -0.241749 0.461537 -1.94905 -0.0932443 0.563871 0.644429 0.201025 0.0119870 0.0233517 0.583465 0.947984 0.334838 0.868387 2.17941
#> 86: 33410.523: -0.279468 0.448068 -1.97290 -0.0898310 0.563367 0.646238 0.200741 0.0149853 0.0252612 0.589257 0.956212 0.332807 0.872562 2.25468
#> 87: 33410.063: -0.321145 0.432104 -1.98594 -0.0850476 0.566316 0.644337 0.196629 0.00845322 0.0244359 0.589584 0.954393 0.341249 0.870793 2.32987
#> 88: 33409.867: -0.365557 0.425585 -1.99420 -0.103742 0.565831 0.642854 0.202227 0.0108960 0.0270830 0.577494 0.931994 0.359011 0.859726 2.39639
#> 89: 33409.764: -0.415977 0.435233 -2.01156 -0.0989621 0.562959 0.640655 0.208719 0.0120761 0.0215660 0.580853 0.936365 0.346932 0.831181 2.45925
#> 90: 33409.128: -0.465992 0.438348 -2.02826 -0.0896046 0.565948 0.647408 0.201611 0.0120632 0.0238730 0.581453 0.950134 0.371791 0.811031 2.52079
#> 91: 33409.066: -0.466059 0.438577 -2.02892 -0.0911731 0.565463 0.646218 0.200041 0.00868178 0.0225310 0.584574 0.949425 0.371711 0.811247 2.52107
#> 92: 33409.006: -0.468161 0.438087 -2.02990 -0.0909369 0.566072 0.646392 0.200252 0.0114764 0.0240113 0.584973 0.949218 0.370257 0.812047 2.52448
#> 93: 33408.974: -0.470743 0.437187 -2.03079 -0.0907168 0.565420 0.645976 0.200272 0.0105037 0.0235737 0.585387 0.949194 0.368955 0.813237 2.52864
#> 94: 33408.953: -0.473173 0.436678 -2.03247 -0.0905881 0.564901 0.645892 0.200380 0.0117193 0.0240240 0.585779 0.949101 0.367877 0.814548 2.53272
#> 95: 33408.929: -0.475882 0.435750 -2.03347 -0.0905977 0.564666 0.645701 0.200261 0.0107780 0.0236356 0.585975 0.949232 0.366766 0.815626 2.53695
#> 96: 33408.781: -0.523280 0.417010 -2.04532 -0.0900355 0.568743 0.644871 0.199067 0.0107564 0.0234362 0.586810 0.953304 0.352092 0.831168 2.60830
#> 97: 33408.596: -0.574763 0.397657 -2.05336 -0.0846317 0.564957 0.643929 0.200117 0.00984481 0.0255994 0.589168 0.958682 0.362849 0.841883 2.67841
#> 98: 33408.387: -0.634567 0.398869 -2.07006 -0.0818251 0.564183 0.647226 0.198470 0.0120080 0.0218985 0.591845 0.957664 0.377272 0.817882 2.73867
#> 99: 33408.232: -0.691083 0.416478 -2.08958 -0.0866217 0.562603 0.646089 0.198238 0.0119281 0.0245659 0.590874 0.955901 0.376374 0.770715 2.78529
#> 100: 33408.109: -0.746839 0.408664 -2.09374 -0.0881178 0.564144 0.644890 0.199875 0.0116913 0.0244096 0.589823 0.959824 0.388587 0.774097 2.85563
#> 101: 33407.999: -0.801257 0.397870 -2.09712 -0.0849578 0.563792 0.646254 0.198623 0.00980912 0.0223195 0.588517 0.954046 0.386941 0.779570 2.92734
#> 102: 33407.921: -0.853950 0.380647 -2.10177 -0.0840622 0.565168 0.647478 0.199094 0.0120656 0.0241826 0.590139 0.952169 0.387349 0.782712 2.99944
#> 103: 33407.797: -0.958374 0.329876 -2.13572 -0.0828375 0.563581 0.645506 0.198379 0.0126769 0.0238701 0.591165 0.955159 0.395116 0.725150 3.14345
#> 104: 33407.691: -1.06984 0.342544 -2.14142 -0.0845975 0.563318 0.648819 0.199856 0.0104877 0.0225213 0.590481 0.952769 0.409058 0.684826 3.29934
#> 105: 33407.632: -1.10901 0.383641 -2.12926 -0.0831487 0.564241 0.645439 0.197983 0.0111166 0.0235978 0.591065 0.955477 0.416830 0.684079 3.36346
#> 106: 33407.629: -1.11565 0.381689 -2.13127 -0.0855764 0.563851 0.646877 0.198524 0.0120156 0.0240080 0.589093 0.955656 0.415900 0.680614 3.37955
#> 107: 33407.609: -1.12095 0.373913 -2.13692 -0.0859254 0.564152 0.646457 0.198823 0.0111967 0.0235081 0.589286 0.955134 0.418232 0.673434 3.39212
#> 108: 33407.603: -1.12629 0.367001 -2.14180 -0.0859437 0.564592 0.646094 0.199096 0.0112936 0.0237005 0.589509 0.954737 0.420422 0.666798 3.40581
#> 109: 33407.592: -1.14359 0.359646 -2.14302 -0.0862764 0.564311 0.645859 0.198928 0.0113385 0.0237446 0.589811 0.954508 0.423695 0.666104 3.45635
#> 110: 33407.582: -1.16043 0.355097 -2.14882 -0.0857520 0.564395 0.645699 0.199056 0.0110590 0.0236957 0.589247 0.954831 0.425828 0.652028 3.50512
#> 111: 33407.574: -1.17062 0.348212 -2.15487 -0.0862770 0.564348 0.645902 0.198954 0.0110890 0.0236427 0.589065 0.954580 0.430624 0.628384 3.55149
#> 112: 33407.570: -1.18176 0.348615 -2.15689 -0.0862902 0.564230 0.645968 0.199093 0.0113208 0.0234609 0.589317 0.954470 0.431972 0.616078 3.60286
#> 113: 33407.567: -1.18778 0.340755 -2.16313 -0.0856416 0.564148 0.645983 0.198977 0.0112198 0.0237795 0.589786 0.955244 0.436088 0.603815 3.65400
#> 114: 33407.566: -1.18608 0.336148 -2.16587 -0.0859493 0.564451 0.646022 0.198927 0.0111621 0.0237166 0.589372 0.954808 0.436817 0.597750 3.67543
#> 115: 33407.566: -1.18344 0.338239 -2.16421 -0.0859896 0.564210 0.646036 0.198935 0.0112391 0.0236187 0.589432 0.954885 0.438714 0.589864 3.69661
#> 116: 33407.566: -1.18064 0.337678 -2.16520 -0.0860472 0.564253 0.646033 0.198956 0.0112285 0.0236448 0.589414 0.954832 0.438147 0.592681 3.69200
#> 117: 33407.566: -1.17996 0.338181 -2.16453 -0.0859897 0.564291 0.646026 0.198945 0.0112172 0.0236574 0.589431 0.954853 0.438125 0.592049 3.69259
#> 118: 33407.566: -1.17949 0.337931 -2.16478 -0.0859944 0.564271 0.646033 0.198943 0.0112249 0.0236473 0.589429 0.954853 0.438195 0.592206 3.69256
#> Warning: 4 external pointers will be removed
#> Step 3 -fit model-: 38.89 sec elapsed
fm_generate_graphs()
: generate output graphs
This function will generate graphs of the model predictions. It will
use as input the data generated from fm_fit_model()
and
provide the predictive plot within a named list. Is the sampling process
is activated (samp_process = 1
), an additionnal graphic for
eta result will be generated.
# run part 3
fm_generate_graphs(fm_model_results = fm_model_results)
#> Running step 4 -plot graphs-
#> Step 4 -plot graphs-: 0.41 sec elapsed
#> $pred_plot